Identification of a non-exported Plasmepsin V substrate that functions in the parasitophorous vacuole of malaria parasites

Author:

Fréville Aline1ORCID,Ressurreição Margarida1,van Ooij ChristiaanORCID

Affiliation:

1. Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom

Abstract

ABSTRACT Malaria parasites alter multiple properties of the host erythrocyte by exporting proteins into the host cell. Many exported proteins contain a five-amino acid motif called the Plasmodium export element (PEXEL) that is cleaved by the parasite protease Plasmepsin V (PM V). The presence of a PEXEL is considered a signature of protein export and has been used to identify a large number of exported proteins. The export of proteins becomes essential midway through the intraerythrocytic cycle—preventing protein export blocks parasite development 18–24 h after invasion. However, a genetic investigation revealed that the absence of the PEXEL protein PFA0210c (PF3D7_0104200) causes parasite development to arrest immediately after invasion. We now show that this protein is cleaved by PM V but not exported into the host erythrocyte and instead functions in the parasitophorous vacuole; hence, the protein was renamed PV6. We additionally show that the lysine residue that becomes the N-terminus of PV6 after processing by PM V prevents export. This is the first example of a native Plasmodium falciparum PM V substrate that remains in the parasitophorous vacuole. We also provide evidence suggesting that the parasite may produce at least one additional essential, non-exported PM V substrate. Therefore, the presence of a PEXEL and, hence, processing of a protein by PM V do not always target a protein for export, and PM V likely has a broader function in parasite growth beyond processing exported proteins. Furthermore, we utilized this finding to investigate possible requirements for protein export further. IMPORTANCE In the manuscript, the authors investigate the role of the protease Plasmepsin V in the parasite–host interaction. Whereas processing by Plasmepsin V was previously thought to target a protein for export into the host cell, the authors now show that there are proteins cleaved by this protease that are not exported but instead function at the host–parasite interface. This changes the view of this protease, which turns out to have a much broader role than anticipated. The result shows that the protease may have a function much more similar to that of related organisms. The authors also investigate the requirements for protein export by analyzing exported and non-exported proteins and find commonalities between the proteins of each set that further our understanding of the requirements for protein export.

Funder

UKRI | Medical Research Council

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3