Author:
Ravnikar P D,Somerville R L
Abstract
There exists in Escherichia coli a known set of enzymes that were shown to function in an efficient and concerted way to convert threonine to serine. The sequence of reactions catalyzed by these enzymes is designated the Tut cycle (threonine utilization). To demonstrate that the relevant genes and their protein products play essential roles in serine biosynthesis, a number of mutants were analyzed. Strains of E. coli with lesions in serA, serB, serC, or glyA grew readily on minimal medium supplemented with elevated levels of leucine, arginine, lysine, threonine, and methionine. No growth on this medium was observed upon testing double mutants with lesions in one of the known ser genes plus a second lesion in glyA (serine hydroxymethyltransferase), gcv (the glycine cleavage system), or tdh (threonine dehydrogenase). Pseudorevertants of ser mutants capable of growth on either unsupplemented minimal medium or medium supplemented with low levels of leucine, arginine, lysine, threonine, and methionine were isolated. At least two unlinked mutations were associated with such phenotypes.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献