Author:
Olson Michael E.,Nygaard Tyler K.,Ackermann Laynez,Watkins Robert L.,Zurek Oliwia W.,Pallister Kyler B.,Griffith Shannon,Kiedrowski Megan R.,Flack Caralyn E.,Kavanaugh Jeffrey S.,Kreiswirth Barry N.,Horswill Alexander R.,Voyich Jovanka M.
Abstract
ABSTRACTSeveral prominent bacterial pathogens secrete nuclease (Nuc) enzymes that have an important role in combating the host immune response. Early studies ofStaphylococcus aureusNuc attributed its regulation to theagrquorum-sensing system. However, recent microarray data have indicated thatnucis under the control of the SaeRS two-component system, which is a major regulator ofS. aureusvirulence determinants. Here we report that thenucgene is directly controlled by the SaeRS two-component system through reporter fusion, immunoblotting, Nuc activity measurements, promoter mapping, and binding studies, and additionally, we were unable identify a notable regulatory link to theagrsystem. The observed SaeRS-dependent regulation was conserved across a wide spectrum of representativeS. aureusisolates. Moreover, with community-associated methicillin-resistantS. aureus(CA MRSA) in a mouse model of peritonitis, we observedin vivoexpression of Nuc activity in an SaeRS-dependent manner and determined that Nuc is a virulence factor that is important forin vivosurvival, confirming the enzyme's role as a contributor to invasive disease. Finally, natural polymorphisms were identified in the SaeRS proteins, one of which was linked to Nuc regulation in a CA MRSA USA300 endocarditis isolate. Altogether, our findings demonstrate that Nuc is an importantS. aureusvirulence factor and part of the SaeRS regulon.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献