Opposite Effects of Dextran Sulfate 500, the Polyene Antibiotic MS-8209, and Congo Red on Accumulation of the Protease-Resistant Isoform of PrP in the Spleens of Mice Inoculated Intraperitoneally with the Scrapie Agent

Author:

Beringue Vincent1,Adjou Karim T.1,Lamoury François1,Maignien Thomas1,Deslys Jean-Philippe1,Race Richard2,Dormont Dominique1

Affiliation:

1. CEA, Service de Neurovirologie, DRM/DSV, CRSSA, Fontenay aux Roses, France,1 and

2. Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana2

Abstract

ABSTRACT The mode and the site of action of the major antiscrapie drugs have been studied by investigating their effects on the abnormal protease-resistant isoform of PrP (PrPres) and on its accumulation in mouse spleen. Day-by-day PrPres accumulation in the spleen and in other peripheral organs was first monitored to describe the early steps of scrapie pathogenesis. Three phases were identified: the detection of scrapie inoculum on the day of scrapie infection, a clearance phase, and then the peripheral accumulation of PrPres. In a second step, the effects of the polyene antibiotic MS-8209, the polyanion dextran sulfate 500 (DS500), and Congo red were assessed on these phases, after the drugs were coincubated with scrapie inoculum. Highly different mechanisms and sites of action were apparent. MS-8209 had a weak effect on the accumulation of PrPres in spleen, suggesting another site of intervention for this drug. DS500 delayed the beginning of the clearance phase but then blocked PrPres synthesis for a long period of time, probably because of its immunological effects on the spleen. Surprisingly, Congo red suppressed the clearance phase of scrapie inoculum and then increased transiently accumulation of PrPres in spleen. We showed in vitro that this effect was related to a direct enhancement of the protease resistance of PrPres by the drug.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3