Affiliation:
1. Institut für Siedlungswasserbau, Wassergüte- und Abfallwirtschaft, Universität Stuttgart, Germany.
Abstract
Direct microscopic quantification of respiring (i.e., viable) bacteria was performed for drinking water samples and biofilms grown on different opaque substrata. Water samples or biofilms developed in flowing drinking water were incubated with the vital redox dye 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and R2A medium. One hour of incubation with 0.5 mM CTC was sufficient to obtain intracellular reduction of CTC to the insoluble fluorescent formazan (CTF) product, which was indicative of cellular respiratory (i.e., electron transport) activity. This result was obtained with both planktonic and biofilm-associated cells. Planktonic bacteria were captured on 0.2-microns-pore-size polycarbonate membrane filters and examined by epifluorescence microscopy. Respiring cells containing CTF deposits were readily detected and quantified as red-fluorescing objects on a dark background. The number of CTC-reducing bacteria was consistently greater than the number of aerobic CFU determined on R2A medium. Approximately 1 to 10% of the total planktonic population (determined by counterstaining with 4,6-diamidino-2-phenylindole) were respirometrically active. The proportion of respiring bacteria in biofilms composed of drinking water microflora was greater, ranging from about 5 to 35%, depending on the substratum. Respiring cells were distributed more or less evenly in biofilms, as demonstrated by counterstaining with 4,6-diamidino-2-phenylindole. The amount of CTF deposited in single cells of Pseudomonas putida that formed monospecies biofilms was quantified by digital image analysis and used to indicate cumulative respiratory activity. These data indicated significant cell-to-cell variation in respiratory activity and reduced electron transport following a brief period of nutrient starvation.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
179 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献