The predominant virus antigen burden is present in macrophages in Theiler's murine encephalomyelitis virus-induced demyelinating disease

Author:

Lipton H L1,Twaddle G1,Jelachich M L1

Affiliation:

1. Division of Neurology, Evanston Hospital, Illinois.

Abstract

Theiler's murine encephalomyelitis virus (TMEV) produces a persistent central nervous system infection and chronic, inflammatory demyelinating disease in susceptible mice. TMEV antigen(s) and RNA genome have been detected in astrocytes, oligodendrocytes, and macrophages during persistence. Whether there is a predominant cell type in which TMEV persists has not been resolved. Since TMEV-induced demyelinating lesions are infiltrated with macrophages and a number of other persistent viruses show near-exclusive tropism for these phagocytic cells, we used two-color immunofluorescent staining with conventional and confocal microscopy to colocalize TMEV to cells that stain with monoclonal antibodies (MOMA-2) [unknown antigen], Mac-1 [CD11b], FA-11 [CD66], and 2F8 [scavenger receptor]) to macrophages in BeAn-infected SJL mice. A predominant virus antigen burden within macrophages infiltrating demyelinating lesions was seen. A dichotomy of cells staining for virus antigen(s) was found with infected cells containing either a large or small virus antigen load. Ninety percent of cells with a large virus antigen load were large phagocytes (20 to 50 microns) that were readily detected at low power (5x objective). Cells with smaller amounts of virus antigen(s) turned out to be either these same large phagocytic cells or much smaller cells, approximately equal to 10 microns in diameter. Forty percent of cells with a small virus antigen load were macrophages. The unidentified approximately equal to 10-microns cells that are virus antigen positive and macrophage negative in this study could still be macrophages, or they may be oligodendrocytes. The fact that virus was detected in the cytoplasm and not phagolysosomes of macrophages and the sheer mass of fluorescently stained virus proteins in some macrophages suggest that TMEV persists in these phagocytic cells by active virus replication.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3