Primary sequence of the Escherichia coli fadBA operon, encoding the fatty acid-oxidizing multienzyme complex, indicates a high degree of homology to eucaryotic enzymes

Author:

DiRusso C C1

Affiliation:

1. Department of Biochemistry, University of Tennessee, Memphis 38163.

Abstract

In Escherichia coli at least five enzyme activities required for the beta-oxidation of fatty acids are associated with a multienzyme complex composed of two subunits in alpha 2 beta 2 conformation (A. Pramanik et al., J. Bacteriol. 137:469-473, 1979). In the present work, the DNA sequence of the genes encoding these two subunits, fadB and fadA, has been determined. The direction of transcription was from fadB to fadA rather than from fadA to fadB, as suggested previously (S. K. Spratt et al., J. Bacteriol. 158:535-542, 1984). Only 10 nucleotides separated the coding sequences for the two peptides, confirming the suggestion that these genes form an operon. The peptides encoded by fadB and fadA were 729 amino acids and 387 amino acids, respectively, in length. The larger and smaller peptides had predicted molecular masses of 79,678 and 40,876 Da, respectively. Recently, the sequence of the fadA gene was published in a separate report (Yang et al., J. Biol. Chem. 265:10424-10429, 1990). In this work, most of the DNA sequence for fadA was confirmed, and 10 errors were corrected. Three of these nucleotide changes resulted in five amino acid residue changes predicted in the carboxy terminus of the fadA-encoded peptide. By comparison to other peptide sequences, the alpha subunit encoded within fadB had 31% perfect identity with the rat peroxisomal enoyl-coenzyme A:hydratase-3-hydroxyacyl-coenzyme A dehydrogenase trifunctional enzyme over the entire length of the two peptides. In agreement with the work of Yang et al., the beta subunit encoded within fadA had 35 to 45% perfect identity with five thiolase genes from different eucaryotic sources over the entire length of the peptide.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3