Reversal of the interferon-sensitive phenotype of a vaccinia virus lacking E3L by expression of the reovirus S4 gene

Author:

Beattie E1,Denzler K L1,Tartaglia J1,Perkus M E1,Paoletti E1,Jacobs B L1

Affiliation:

1. Virogenetics Corporation, Troy, New York 12180.

Abstract

The vaccinia virus (VV) E3L gene, which encodes a potent inhibitor of the interferon (IFN)-induced, double-stranded RNA (dsRNA)-dependent protein kinase, PKR, is thought to be involved in the IFN-resistant phenotype of VV. The E3L gene products, p25 and p20, act as inhibitors of PKR, presumably by binding and sequestering activator dsRNA from the kinase. In this study we demonstrate that VV with the E3L gene specifically deleted (vP1080) was sensitive to the antiviral effects of IFN and debilitated in its ability to rescue vesicular stomatitis virus from the antiviral effects of IFN. Infection of L929 cells with E3L-minus virus led to rRNA degradation typical of activation of the 2'-5'-oligoadenylate synthetase/RNase L system, and extracts of infected cells lacked the PKR-inhibitory activity characteristic of wild-type VV. The reovirus S4 gene, which encodes a dsRNA-binding protein (sigma 3) that can also inhibit PKR activation by binding and sequestering activator dsRNA, was inserted into vP1080. The resultant virus (vP1112) was partially resistant to the antiviral effects of IFN in comparison with vP1080. Further studies demonstrated that transient expression of the reovirus sigma 3 protein rescued E3L-minus VV replication in HeLa cells. In these studies, rescue by sigma 3 mutants correlated with their ability to bind dsRNA. Finally, vP112 was also able to rescue the replication of the IFN-sensitive virus vesicular stomatitis virus in a manner similar to that of wild-type VV. Together, these results suggest that the reovirus S4 gene can replace the VV E3L gene with respect to interference with the IFN-induced antiviral activity.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 188 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3