Affiliation:
1. Cedars-Sinai Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048.
Abstract
We have constructed recombinant baculoviruses individually expressing seven of the herpes simplex virus type 1 (HSV-1) glycoproteins (gB, gC, gD, gE, gG, gH, and gI). Vaccination of mice with gB, gC, gD, gE, or gI resulted in production of high neutralizing antibody titers to HSV-1 and protection against intraperitoneal and ocular challenge with lethal doses of HSV-1. This protection was statistically significant and similar to the protection provided by vaccination with live nonvirulent HSV-1 (90 to 100% survival). In contrast, vaccination with gH produced low neutralizing antibody titers and no protection against lethal HSV-1 challenge. Vaccination with gG produced no significant neutralizing antibody titer and no protection against ocular challenge. However, gG did provide modest, but statistically significant, protection against lethal intraperitoneal challenge (75% protection). Compared with the other glycoproteins, gG and gH were also inefficient in preventing the establishment of latency. Delayed-type hypersensitivity responses to HSV-1 at day 3 were highest in gG-, gH-, and gE-vaccinated mice, while on day 6 mice vaccinated with gC, gE, and gI had the highest delayed-type hypersensitivity responses. All seven glycoproteins produced lymphocyte proliferation responses, with the highest response being seen with gG. The same five glycoproteins (gB, gC, gD, gE, and gI) that induced the highest neutralization titers and protection against lethal challenge also induced some killer cell activity. The results reported here therefore suggest that in the mouse protection against lethal HSV-1 challenge and the establishment of latency correlate best with high preexisting neutralizing antibody titers, although there may also be a correlation with killer cell activity.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology