Effect of D-amino acids on structure and synthesis of peptidoglycan in Escherichia coli

Author:

Caparrós M1,Pisabarro A G1,de Pedro M A1

Affiliation:

1. Centro de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Spain.

Abstract

Growth of Escherichia coli in the presence of certain D-amino acids, such as D-methionine, results in the incorporation of the D-amino acid into macromolecular peptidoglycan and can be lethal at high concentrations. Previous studies suggested that incorporation was independent of the normal biosynthetic pathway. An enzymatic reaction between the D-amino acid and macromolecular peptidoglycan was proposed as the mechanism of incorporation. The application of more advanced analytical techniques, notably high-pressure liquid chromatography, revealed that the presence of a D-amino acid susceptible to incorporation induced a multiplicity of alterations in peptidoglycan metabolism. Results derived basically from the study of samples treated with D-Met, D-Trp, and D-Phe indicated that the incorporation of a D-amino acid results in the accumulation of two major new muropeptides whose general structures most likely are GlucNAc-MurNAc-L-Ala-D-Glu-m-diaminopimelic acid-D-aa and GlucNAc-MurNAc-L-Ala-D-Glu-m-diaminopimelic acid-D-Ala-GlucNAc-MurNAc-L-Ala-D-Glu-m-diaminopimelic acid-D-aa, where D-aa represents a residue of the added D-amino acid. Resting cells are proficient in the incorporation of D-amino acids and can reach peptidoglycan modification levels comparable to those in growing cells. Under our conditions, D-amino acids had no apparent effect on growth or morphology but caused a severe inhibition of peptidoglycan synthesis and cross-linking, possibly leading to a reduction in the amount of peptidoglycan per cell. The properties of the reaction support the involvement of a penicillin-insensitive LD-transpeptidase enzyme in the synthesis of modified muropeptides and a possible inhibitory action of D-amino acids on high-molecular-weight penicillin-binding proteins.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3