Affiliation:
1. Laboratoire de Microbiologie, Faculté des Sciences, Université Libre de Bruxelles and Institut de Recherches du Centre d'Enseignement et de Recherches des Industries Alimentaires et Chimiques, B-1070 Brussels, Belgium
Abstract
The arginine pathway carbamoylphosphate synthase (CPSase A) from
Saccharomyces cerevisiae
was shown to be highly unstable and could not be substantially purified. In spite of this instability, a number of important properties of this enzyme were determined with crude preparations. A molecular weight of 140,000 (7.9S) was estimated for the native enzyme by sucrose gradient centrifugation; a significantly higher value, 175,000, was obtained by gel filtration on Sephadex. The enzyme is an aggregate consisting of two protein components, coded for by the unlinked genes
cpaI
and
cpaII
. These components were separated by diethylaminoethyl-cellulose chromatography. Their molecular weights, estimated by Sephadex gel filtration, were 36,000 and 130,000. The large component catalyzed the synthesis of carbamoylphosphate from ammonia. The small component was required in addition to the large one for the physiologically functional glutamine-dependent activity. Apparent Michaelis constants at pH 7.5 of 1.25 mM for glutamine and 75 mM for NH
4
Cl were measured with the native enzyme. The use of various glutamine analogs, including 2-amino-4-oxo-5-chloropentanoic acid, indicated that binding of glutamine to a site located on the small component was followed by transfer of its amide nitrogen to the ammonia site on the heavy component. This ammonia site was able to function independently of the utilization of glutamine. However, binding of glutamine was conjectured to cause a conformational change in the heavy component that greatly increased the rate of synthesis of carbamoylphosphate from ammonia. Glutamine, which was also shown to stabilize the aggregation of the two components, appeared to be a major effector of the catalytic and structural properties of CPSase A. In view of these observations, the CPSase A of yeast appears to share a number of structural and catalytic properties with the
Escherichia coli
enzyme. Obviously, the unlinked
cpaI
and
cpaII
genes of yeast are homologous to the adjacent
carA
and
carB
genes that code for the two subunits of the bacterial enzyme.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献