Trypanosomes Expressing a Mosaic Variant Surface Glycoprotein Coat Escape Early Detection by the Immune System

Author:

Dubois Melissa E.1,Demick Karen P.1,Mansfield John M.1

Affiliation:

1. Department of Bacteriology, University of Wisconsin—Madison, 1925 Willow Drive, Madison, Wisconsin 53706

Abstract

ABSTRACT Host resistance to African trypanosomiasis is partially dependent on an early and strong T-independent B-cell response against the variant surface glycoprotein (VSG) coat expressed by trypanosomes. The repetitive array of surface epitopes displayed by a monotypic surface coat, in which identical VSG molecules are closely packed together in a uniform architectural display, cross-links cognate B-cell receptors and initiates T-independent B-cell activation events. However, this repetitive array of identical VSG epitopes is altered during the process of antigenic variation, when former and nascent VSG proteins are transiently expressed together in a mosaic surface coat. Thus, T-independent B-cell recognition of the trypanosome surface coat may be disrupted by the introduction of heterologous VSG molecules into the coat structure. To address this hypothesis, we transformed Trypanosoma brucei rhodesiense LouTat 1 with the 117 VSG gene from Trypanosoma brucei brucei MiTat 1.4 in order to produce VSG double expressers; coexpression of the exogenous 117 gene along with the endogenous LouTat 1 VSG gene resulted in the display of a mosaic VSG coat. Results presented here demonstrate that the host's ability to produce VSG-specific antibodies and activate B cells during early infection with VSG double expressers is compromised relative to that during infection with the parental strain, which displays a monotypic coat. These findings suggest a previously unrecognized mechanism of immune response evasion in which coat-switching trypanosomes fail to directly activate B cells until coat VSG homogeneity is achieved. This process affords an immunological advantage to trypanosomes during the process of antigenic variation.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3