Structural analysis of the Escherichia coli K-12 hisT operon by using a kanamycin resistance cassette

Author:

Arps P J,Winkler M E

Abstract

We constructed a series of recombinant plasmids containing a kanamycin resistance (Kmr) cassette upstream from, within, and downstream from hisT, which encodes the tRNA modification enzyme pseudouridine synthase I. These Kmr insertions were then crossed directly into the bacterial chromosome. We determined growth characteristics, assayed in vivo hisT expression, and mapped in vivo hisT operon transcripts for the Kmr insertion mutants. We also analyzed polypeptides synthesized in minicells from plasmids containing Kmr cassettes. The combined results from these experiments demonstrate new features concerning the structure and expression of the complex operon that contains hisT. We show that the minimum size of the operon is approximately 3,500 base pairs and that it contains at least four genes, which are arranged in the order usg-2 (pdxB), usg-1, hisT, and dsg-1 and encode polypeptides with apparent molecular masses of 42,000, 45,000, 31,000, and 17,000 daltons, respectively. Of these genes, only the functions of usg-2 (pdxB) and hisT are known, and genetic evidence suggests that these two genes do not require usg-1 or dsg-1 for function, usg-2 (pdxB) is required for growth of bacteria on minimal medium at 37 degrees C. In contrast, the three genes at the end of the hisT operon are dispensable and form a transcription unit that is expressed from a relatively strong internal promoter. The phenotypes of the Kmr insertion mutants and results from gene expression experiments further confirm the position of the internal promoter and locate additional genetic signals in the DNA sequence around hisT. The experiments reported here also indicate several interesting properties of the Kmr cassette as a tool for probing complex operons.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3