Author:
Wollin R,Stocker B A,Lindberg A A
Abstract
Lysogenization of Salmonella typhimurium with either of the bacteriophages A3 and A4 results in O-acetylation of the L-rhamnose residues of the O-polysaccharide chain of the lipopolysaccharide of the bacterial cell envelope. The O-acetyl group is found on both O-2 and O-3 of the L-rhamnosyl residues. This lysogenic conversion prevents the adsorption of the A3 and A4 phages and also greatly reduces the rate of adsorption of phage P22 to the O-polysaccharide chain as measured by binding studies with whole bacteria. Isolated lipopolysaccharide from A3- and A4-lysogenized bacteria was also inefficient in inactivating these phages: the concentration required for 50% inactivation was 10,000-fold higher than that for lipopolysaccharide from S. typhimurium not lysogenized by any A phage. Binding of phages A3 and A4 is accompanied by hydrolysis of the alpha-1,3 linkage between rhamnose and galactose in the tetrasaccharide repeating unit of the O-polysaccharide. Phage hydrolysis generates saccharides of various lengths, the majority being dodecasaccharides, i.e., equivalent to three repeating units. It is surmised that O-acetylation of the rhamnosyl residue interferes with phage A3, A4, and P22 infection by preventing binding to and hydrolysis of the O-polysaccharide chain, the initial step in the phage infection cycle. The new O-acetyl-rhamnose entities did not elicit specific antibodies in rabbits in accordance with earlier experiences. The O-acetylation of O-2 and O-3 of rhamnose is a new, hitherto unknown, modification of the O-polysaccharide chain of S. typhimurium.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献