Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme

Author:

Fox J D1,Kerby R L1,Roberts G P1,Ludden P W1

Affiliation:

1. Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706, USA.

Abstract

In the presence of carbon monoxide, the photosynthetic bacterium Rhodospirillum rubrum induces expression of proteins which allow the organism to metabolize carbon monoxide in the net reaction CO + H2O --> CO2 + H2. These proteins include the enzymes carbon monoxide dehydrogenase (CODH) and a CO-tolerant hydrogenase. In this paper, we present the complete amino acid sequence for the large subunit of this hydrogenase and describe the properties of the crude enzyme in relation to other known hydrogenases. The amino acid sequence deduced from the CO-induced hydrogenase large-subunit gene (cooH) shows significant similarity to large subunits of other Ni-Fe hydrogenases. The closest similarity is with HycE (58% similarity and 37% identity) from Escherichia coli, which is the large subunit of an Ni-Fe hydrogenase (isoenzyme 3). The properties of the CO-induced hydrogenase are unique. It is exceptionally resistant to inhibition by carbon monoxide. It also exhibits a very high ratio of H2 evolution to H2 uptake activity compared with other known hydrogenases. The CO-induced hydrogenase is tightly membrane bound, and its inhibition by nonionic detergents is described. Finally, the presence of nickel in the hydrogenase is addressed. Analysis of wild-type R. rubrum grown on nickel-depleted medium indicates a requirement for nickel for hydrogenase activity. However, analysis of strain UR294 (cooC insertion mutant defective in nickel insertion into CODH) shows that independent nickel insertion mechanisms are utilized by hydrogenase and CODH. CooH lacks the C-terminal peptide that is found in other Ni-Fe hydrogenases; in other systems, this peptide is cleaved during Ni processing.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3