Engineering Neurospora crassa for Improved Cellobiose and Cellobionate Production

Author:

Hildebrand Amanda,Szewczyk Edyta,Lin Hui,Kasuga Takao,Fan Zhiliang

Abstract

ABSTRACTWe report engineeringNeurospora crassato improve the yield of cellobiose and cellobionate from cellulose. A previously engineered strain ofN. crassa(F5) with six of seven β-glucosidase (bgl) genes knocked out was shown to produce cellobiose and cellobionate directly from cellulose without the addition of exogenous cellulases. In this study, the F5 strain was further modified to improve the yield of cellobiose and cellobionate from cellulose by increasing cellulase production and decreasing product consumption. The effects of two catabolite repression genes,cre-1andace-1, on cellulase production were investigated. The F5 Δace-1mutant showed no improvement over the wild type. The F5 Δcre-1and F5 Δace-1Δcre-1strains showed improved cellobiose dehydrogenase and exoglucanase expression. However, this improvement in cellulase expression did not lead to an improvement in cellobiose or cellobionate production. The cellobionate phosphorylase gene (ndvB) was deleted from the genome of F5 Δace-1Δcre-1to prevent the consumption of cellobiose and cellobionate. Despite a slightly reduced hydrolysis rate, the F5 Δace-1Δcre-1ΔndvBstrain converted 75% of the cellulose consumed to the desired products, cellobiose and cellobionate, compared to 18% converted by the strain F5 Δace-1Δcre-1.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference46 articles.

1. Fuel ethanol from cellulosic biomass;Science,1991

2. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol,2011

3. Biomass recalcitrance: engineering plants and enzymes for biofuels production;Science,2007

4. Enteric bacterial catalysts for fuel ethanol production;Biotechnol Prog,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3