A Novel Resistance Pathway for Calcineurin Inhibitors in the Human-Pathogenic Mucorales Mucor circinelloides

Author:

Vellanki Sandeep1,Billmyre R. Blake2,Lorenzen Alejandra1,Campbell Micaela1,Turner Broderick1,Huh Eun Young1,Heitman Joseph2,Lee Soo Chan1

Affiliation:

1. South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA

2. Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA

Abstract

Mucor is intrinsically resistant to most known antifungals, which makes mucormycosis treatment challenging. Calcineurin is a serine/threonine phosphatase that is widely conserved across eukaryotes. When calcineurin function is inhibited in Mucor , growth shifts to a less virulent yeast growth form, which makes calcineurin an attractive target for development of new antifungal drugs. Previously, we identified two distinct mechanisms through which Mucor can become resistant to calcineurin inhibitors involving Mendelian mutations in the gene for FKBP12, including mechanisms corresponding to calcineurin A or B subunits and epimutations silencing the FKBP12 gene. Here, we identified a third novel mechanism where loss-of-function mutations in the amino acid permease corresponding to the bycA gene contribute to resistance against calcineurin inhibitors. When calcineurin activity is absent, BycA can activate protein kinase A (PKA) to promote yeast growth via a cAMP-independent pathway. Our data also show that calcineurin activity contributes to host-pathogen interactions primarily in the pathogenesis of Mucor.

Funder

Korean Food Research Institution

HHS | NIH | National Institute of Allergy and Infectious Diseases

Max and Minnie Tomerlin Voelcker Fund

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3