Sequences involved in initiation of simian virus 40 late transcription in the absence of T antigen.

Author:

Omilli F,Ernoult-Lange M,Borde J,May E

Abstract

We analyzed the sequences involved in vivo in the initiation of simian virus 40 (SV40) late transcription occurring in the absence of both SV40 origin sequences and T antigen. The constituent elements of the SV40 late promoters have already been the subject of extensive studies. In vitro studies have resulted in the description of two putative domains of the late promoters. The first domain consists of an 11-base-pair (bp) sequence, 5'-GGTACCTAACC-3', located 25 nucleotides (nt) upstream of the SV40 major late initiation site (MLIS) (J. Brady, M. Radonovich, M. Vodkin, V. Natarajan, M. Thoren, G. Das, J. Janik, and N. P. Salzman, Cell 31:624-633, 1982). The second domain is located within the G-C-rich region (J. Brady, M. Radonovich, M. Thoren, G. Das, and N. P. Salzman, Mol. Cell. Biol. 4:133-141; U. Hansen and P. A. Sharp, EMBO J. 2:2293-2303). Our previous in vivo studies permitted us to define a domain of the late promoter which extends from nt 332 to nt 113 and includes the 72-bp enhancer sequences. Here, by using transfection of the appropriate chimeric plasmids into HeLa cells in conjunction with quantitative S1 nuclease analysis, we analyzed in more detail the sequences required for the control of SV40 late-gene expression occurring before the onset of viral DNA replication. We showed that the major late promoter element is in fact the 72-bp repeat enhancer element. This element was able to drive efficient late transcription in the absence of T antigen. Under our experimental conditions, removal of the G-C-rich region (21-bp repeats) entailed a significant increase in the level of late-gene expression. Moreover, translocation of this element closer to the MLIS (53 nt upstream of the MLIS) enhanced the level of transcripts initiated at natural late initiation sites. Our results suggest that the G-C-rich regions have to be positioned between the enhancer element and the initiation sites to stimulate transcription from downstream sites. Thus, the relative arrangement of the various promoter elements is a critical factor contributing to the situation in which the early promoter is stronger than late promoters before viral DNA replication.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3