AmpI Functions as an Iron Exporter To Alleviate β-Lactam-Mediated Reactive Oxygen Species Stress in Stenotrophomonas maltophilia

Author:

Huang Yi-Wei,Huang Hsin-Hui,Huang Kai-Hung,Chen Wei-Chien,Lin Yi-Tsung,Hsu Cheng-Chih,Yang Tsuey-Ching

Abstract

ABSTRACT Stenotrophomonas maltophilia is an organism with a remarkable capacity for drug resistance with several antibiotic resistance determinants in its genome. S. maltophilia genome codes for L1 and L2, responsible for intrinsic β-lactam resistance. The Smlt3721 gene (denoted ampI), located downstream of the L2 gene, encodes an inner membrane protein. The existence of an L2 gene-ampI operon was verified by reverse transcription-PCR (RT-PCR). For aerobically grown S. maltophilia KJ, inactivation of ampI downregulated siderophore synthesis and iron acquisition systems and upregulated the iron storage system, as demonstrated by a transcriptome assay, suggesting that AmpI is involved in iron homeostasis. Compared with the wild-type KJ, an ampI mutant had an elevated intracellular iron level, as revealed by inductively coupled plasma mass spectrometry (ICP-MS) analysis, and increased sensitivity to H2O2, verifying the role of AmpI as an iron exporter. The β-lactam stress increased the intracellular reactive oxygen species (ROS) level and induced the expression of the L1 gene and L2 gene-ampI operon. Compared to its own parental strain, the ampI mutant had reduced growth in β-lactam-containing medium, and the ampI mutant viability was improved after complementation with plasmid pAmpI in either a β-lactamase-positive or β-lactamase-negative genetic background. Collectively, upon challenge with β-lactam, the inducibly expressed L1 and L2 β-lactamases contribute to β-lactam resistance by hydrolyzing β-lactam. AmpI functions as an iron exporter participating in rapidly weakening β-lactam-mediated ROS toxicity. The L1 gene and L2 gene-ampI operon enable S. maltophilia to effectively cope with β-lactam-induced stress.

Funder

Professor Tsuei-Chu Mong Merit Scholarship

Ministry of Science and Technology, Taiwan

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference34 articles.

1. Cofactor effects on the protein folding reaction: acceleration of alpha-lactalbumin refolding by metal ions;Bushmarina;Protein Sci,2006

2. Iron at the interface of immunity and infection;Nairz;Front Pharmacol,2014

3. Superoxide production by respiring membranes of Escherichia coli;Imlay;Free Radic Res Commun,1991

4. Oxidative stress in bacteria and protein damage by reactive oxygen species;Cabiscol;Int Microbiol,2000

5. A common mechanism of cellular death induced by bactericidal antibiotics;Kohanski;Cell,2007

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3