A Novel Pathway for Mammary Epithelial Cell Invasion Induced by the Helix-Loop-Helix Protein Id-1

Author:

Desprez Pierre-Yves12,Lin Claudia Qiao12,Thomasset Nicole1,Sympson Carolyn J.1,Bissell Mina J.1,Campisi Judith1

Affiliation:

1. Department of Cell and Molecular Biology, Life Sciences Division, Berkeley National Laboratory, University of California, Berkeley, California 94720, 1 and

2. Geraldine Brush Cancer Research Institute, California Pacific Medical Center, San Francisco, California 941152

Abstract

ABSTRACT Mammary epithelial cells undergo changes in growth, invasion, and differentiation throughout much of adulthood, and most strikingly during pregnancy, lactation, and involution. Although the pathways of milk protein expression are being elucidated, little is known, at a molecular level, about control of mammary epithelial cell phenotypes during normal tissue morphogenesis and evolution of aggressive breast cancer. We developed a murine mammary epithelial cell line, SCp2, that arrests growth and functionally differentiates in response to a basement membrane and lactogenic hormones. In these cells, expression of Id-1, an inhibitor of basic helix-loop-helix transcription factors, declines prior to differentiation, and constitutive Id-1 expression blocks differentiation. Here, we show that SCp2 cells that constitutively express Id-1 slowly invade the basement membrane but remain anchorage dependent for growth and do not form tumors in nude mice. Cells expressing Id-1 secreted a ∼120-kDa gelatinase. From inhibitor studies, this gelatinase appeared to be a metalloproteinase, and it was the only metalloproteinase detectable in conditioned medium from these cells. A nontoxic inhibitor diminished the activity of this metalloproteinase in vitro and repressed the invasive phenotype of Id-1-expressing cells in culture. The implications of these findings for normal mammary-gland development and human breast cancer were investigated. A gelatinase of ∼120 kDa was expressed by the mammary gland during involution, a time when Id-1 expression is high and there is extensive tissue remodeling. Moreover, high levels of Id-1 expression and the activity of a ∼120-kDa gelatinase correlated with a less-differentiated and more-aggressive phenotype in human breast cancer cells. We suggest that Id-1 controls invasion by normal and neoplastic mammary epithelial cells, primarily through induction of a ∼120-kDa gelatinase. This Id-1-regulated invasive phenotype could contribute to involution of the mammary gland and possibly to the development of invasive breast cancer.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference52 articles.

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3