Affiliation:
1. Department of Medical Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Abstract
Deoxyribonucleic acid (DNA) from several “DNA-deficient” amber mutants was observed to be either nicked (amber 22, 82, 122, and wild type) or cut (amber 453) after injection into a nonpermissive host. This effect was inhibited by chloramphenicol (CM), indicating that it is due to phage-induced enzymes. Although most of the mutants tested for replication in a density-label system were in fact DNA-deficient (amber 22, 82, 122), one (amber 81) was found to replicate almost identically to the wild type, and another (amber 453) was found to assume a hybrid density only. The hybrid moiety was less than, or equal to, one phage equivalent length, and was more efficiently extracted from infected bacteria than was similarly replicated DNA from wild-type phage. Interparental recombination between heavy and light parental DNA was observed for amber 82, 122, and wild type, but was not observed for amber 453; it was inhibited by CM. In contrast to amber 82 and wild type, the amber 453 intracellular DNA does not have single-strand regions, Because amber 453, unlike amber 82 and wild type T4, does not recombine, nicking and exposure of single-strand regions is postulated to be a prerequisite for recombination.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献