Affiliation:
1. Department of Biochemistry, University of Connecticut Health Center, Farmington 06030, USA.
Abstract
Three mutant forms of the protease (GPR) that initiates degradation of small, acid-soluble spore proteins (SASP) during germination of spores of Bacillus species have been generated. In one variant (GPR delta), the putative pro sequence removed in conversion of the GPR zymogen (termed P46) to the active enzyme (termed P41) was deleted. GPR delta was expressed in both Escherichia coli and Bacillus subtilis as a polypeptide of 41 kDa (P41) which was active both in vivo and in vitro. The other two variants had changes in the sequence around the site where the pro sequence is removed, making this sequence even more like that recognized and cleaved by GPR in its SASP substrates. One of these variants (GPRS) was synthesized as P46S in both B. subtilis and E. coli, but P46S was processed to P41S earlier in B. subtilis sporulation than was wild-type P46. The second variant (GPREI) was made as P46EI but underwent extremely rapid processing to P41EI in both E. coli and B. subtilis. Expression of elevated (> 100-fold) levels of GPR delta or GPREI blocked sporulation at the time of synthesis of glucose dehydrogenase. Expression of elevated levels of GPRS or low levels (< 20% of the wild-type level) of GPR delta or GPREI did not retard sporulation, but the SASP level in the resultant spores was greatly reduced. Prolonged incubation of P41 delta, P41EI, or wild-type P41, either in vivo or with purified proteins in vitro, resulted in a second self-cleavage event generating a 39-kDa polypeptide termed P39. The sequence in the P(41)-->P(39) cleavage site was also quite similar to that recognized and cleaved by GPR in SASP. Together, these results strongly support a model in which activation of GPR during sporulation by conversion of P(46) to P(41) is a self-processing event triggered by a change in the spore core environment (i.e., dehydration) which precludes attack of the active P(41) on its SASP substrates. However, in the first minutes of spore germination, rapid spore core hydration allows rapid attack of active GPR on SASP.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology