Direct screening of recombinants in gram-positive bacteria using the secreted staphylococcal nuclease as a reporter

Author:

Le Loir Y1,Gruss A1,Ehrlich S D1,Langella P1

Affiliation:

1. Laboratorie de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas, France.

Abstract

A system for direct screening of recombinant clones in Lactococcus lactis, based on secretion of the staphylococcal nuclease (SNase) in the organism, was developed. The nuc gene (encoding SNase) was cloned on both rolling-circle and theta-replicating plasmids. L. lactis strains containing these nuc+ plasmids secrete SNase and are readily detectable by a simple plate test. A multicloning site (MCS) was introduced just after the cleavage site between leader peptide and the mature SNase, without affecting nuclease activity. Cloning foreign DNA fragments into any site of the MCS interrupts nuc and thus results in nuc mutant clones which are easily distinguished fron nuc+ clones on plates. The utility of this system for L. lactis was demonstrated by cloning an antibiotic resistance marker and Escherichia coli chromosomal DNA fragments into the MCS of the nucMCS cassette. Both cloning vectors containing the nucMCS cassette were also introduced into Streptococcus salivarius subsp. thermophilus, in which direct screening of nuc mutant recombinant clones was also achieved. The potential uses of nuc as a secretion reporter system are discussed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference18 articles.

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Use of genetically modified lactic acid bacteria and bifidobacteria as live delivery vectors for human and animal health;Gut Microbes;2022-08-12

2. Holin‐assisted bacterial recombinant protein export;Biotechnology and Bioengineering;2022-07-28

3. Genetics of Lactococci;Gram-Positive Pathogens;2019-11-26

4. Genetics of Lactococci;Microbiology Spectrum;2019-08-16

5. Application of Lactic Acid Bacteria for Food Biotechnology;Emerging Areas in Bioengineering;2018-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3