Insights into Carbon Metabolism Provided by Fluorescence In Situ Hybridization-Secondary Ion Mass Spectrometry Imaging of an Autotrophic, Nitrate-Reducing, Fe(II)-Oxidizing Enrichment Culture

Author:

Tominski Claudia1,Lösekann-Behrens Tina2,Ruecker Alexander3,Hagemann Nikolas14,Kleindienst Sara1ORCID,Mueller Carsten W.5,Höschen Carmen5,Kögel-Knabner Ingrid5,Kappler Andreas1ORCID,Behrens Sebastian26

Affiliation:

1. Geomicrobiology, Center for Applied Geoscience, University of Tuebingen, Tuebingen, Germany

2. BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA

3. Biogeochemistry and Environmental Quality Research Group, Clemson University, Georgetown, South Carolina, USA

4. Environmental Analytics, Agroscope, Zurich, Switzerland

5. Chair of Soil Science, Technical University of Munich, Freising, Germany

6. Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA

Abstract

ABSTRACT The enrichment culture KS is one of the few existing autotrophic, nitrate-reducing, Fe(II)-oxidizing cultures that can be continuously transferred without an organic carbon source. We used a combination of catalyzed amplification reporter deposition fluorescence in situ hybridization (CARD-FISH) and nanoscale secondary ion mass spectrometry (NanoSIMS) to analyze community dynamics, single-cell activities, and interactions among the two most abundant microbial community members (i.e., Gallionellaceae sp. and Bradyrhizobium spp.) under autotrophic and heterotrophic growth conditions. CARD-FISH cell counts showed the dominance of the Fe(II) oxidizer Gallionellaceae sp. under autotrophic conditions as well as of Bradyrhizobium spp. under heterotrophic conditions. We used NanoSIMS to monitor the fate of 13 C-labeled bicarbonate and acetate as well as 15 N-labeled ammonium at the single-cell level for both taxa. Under autotrophic conditions, only the Gallionellaceae sp. was actively incorporating 13 C-labeled bicarbonate and 15 N-labeled ammonium. Interestingly, both Bradyrhizobium spp. and Gallionellaceae sp. became enriched in [ 13 C]acetate and [ 15 N]ammonium under heterotrophic conditions. Our experiments demonstrated that Gallionellaceae sp. was capable of assimilating [ 13 C]acetate while Bradyrhizobium spp. were not able to fix CO 2 , although a metagenomics survey of culture KS recently revealed that Gallionellaceae sp. lacks genes for acetate uptake and that the Bradyrhizobium sp. carries the genetic potential to fix CO 2 . The study furthermore extends our understanding of the microbial reactions that interlink the nitrogen and Fe cycles in the environment. IMPORTANCE Microbial mechanisms by which Fe(II) is oxidized with nitrate as the terminal electron acceptor are generally referred to as “nitrate-dependent Fe(II) oxidation” (NDFO). NDFO has been demonstrated in laboratory cultures (such as the one studied in this work) and in a variety of marine and freshwater sediments. Recently, the importance of NDFO for the transport of sediment-derived Fe in aquatic ecosystems has been emphasized in a series of studies discussing the impact of NDFO for sedimentary nutrient cycling and redox dynamics in marine and freshwater environments. In this article, we report results from an isotope labeling study performed with the autotrophic, nitrate-reducing, Fe(II)-oxidizing enrichment culture KS, which was first described by Straub et al. (1) about 20 years ago. Our current study builds on the recently published metagenome of culture KS (2).

Funder

Deutsche Forschungsgemeinschaft

Technische Universität München

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3