Interpolation of microbiome composition in longitudinal data sets

Author:

Peleg Omri1ORCID,Borenstein Elhanan123ORCID

Affiliation:

1. Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel

2. Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel

3. Santa Fe Institute, Santa Fe, New Mexico, USA

Abstract

ABSTRACT The human gut microbiome significantly impacts health, prompting a rise in longitudinal studies that capture microbiome samples at multiple time points. Such studies allow researchers to characterize microbiome changes over time, but importantly, also present major analytical challenges due to incomplete or irregular sampling. To address this challenge, longitudinal microbiome studies often employ various interpolation methods, aiming to infer missing microbiome data. However, to date, a comprehensive assessment of such microbiome interpolation techniques, as well as best practice guidelines for interpolating microbiome data, is still lacking. This work aims to fill this gap, rigorously implementing and systematically evaluating a large array of interpolation methods, spanning several different categories, for longitudinal microbiome interpolation. To assess each method and its ability to accurately infer microbiome composition at missing time points, we used three longitudinal microbiome data sets that follow individuals over a long period of time and a leave-one-out approach. Overall, our analysis demonstrated that the K-nearest neighbors algorithm consistently outperforms other methods in interpolation accuracy, yet, accuracy varied widely across data sets, individuals, and time. Factors such as microbiome stability, sample size, and the time gap between interpolated and adjacent samples significantly influenced accuracy, allowing us to develop a model for predicting the expected interpolation accuracy at a missing time point. Our findings, combined, suggest that accurate interpolation in longitudinal microbiome data is feasible, especially in dense cohorts. Furthermore, using our predictive model, future studies can interpolate data only in time points where the expected interpolation accuracy is high. IMPORTANCE Since missing samples are common in longitudinal microbiome dataset due to inconsistent collection practices, it is important to evaluate and benchmark different interpolation methods for predicting microbiome composition in such samples and facilitate downstream analysis. Our study rigorously evaluated several such methods and identified the K-nearest neighbors approach as particularly effective for this task. The study also notes significant variability in interpolation accuracy among individuals, influenced by factors such as age, sample size, and sampling frequency. Furthermore, we developed a predictive model for estimating interpolation accuracy at a specific time point, enhancing the reliability of such analyses in future studies. Combined, our study, thus, provides critical insights and tools that enhance the accuracy and reliability of data interpolation methods in the growing field of longitudinal microbiome research.

Funder

Israel Science Foundation

Edmond J. Safra Center for Bioinformatics at Tel Aviv University

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3