Nucleotide sequence and genomic organization of Aleutian mink disease parvovirus (ADV): sequence comparisons between a nonpathogenic and a pathogenic strain of ADV

Author:

Bloom M E,Alexandersen S,Perryman S,Lechner D,Wolfinbarger J B

Abstract

A DNA sequence of 4,592 nucleotides (nt) was derived for the nonpathogenic ADV-G strain of Aleutian mink disease parvovirus (ADV). The 3'(left) end of the virion strand contained a 117-nt palindrome that could assume a Y-shaped configuration similar to, but less stable than, that of other parvoviruses. The sequence obtained for the 5' end was incomplete and did not contain the 5' (right) hairpin structure but ended just after a 25-nt A + T-rich direct repeat. Features of ADV genomic organization are (i) major left (622 amino acids) and right (702 amino acids) open reading frames (ORFs) in different translational frames of the plus-sense strand, (ii) two short mid-ORFs, (iii) eight potential promoter motifs (TATA boxes), including ones at 3 and 36 map units, and (iv) six potential polyadenylation sites, including three clustered near the termination of the right ORF. Although the overall homology to other parvoviruses is less than 50%, there are short conserved amino acid regions in both major ORFs. However, two regions in the right ORF allegedly conserved among the parvoviruses were not present in ADV. At the DNA level, ADV-G is 97.5% related to the pathogenic ADV-Utah 1. A total of 22 amino acid changes were found in the right ORF; changes were found in both hydrophilic and hydrophobic regions and generally did not affect the theoretical hydropathy. However, there is a short heterogeneous region at 64 to 65 map units in which 8 out of 11 residues have diverged; this hypervariable segment may be analogous to short amino acid regions in other parvoviruses that determine host range and pathogenicity. These findings suggested that this region may harbor some of the determinants responsible for the differences in pathogenicity of ADV-G and ADV-Utah 1.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3