Lysine-Independent Turnover of Cyclin G1 Can Be Stabilized by B′α Subunits of Protein Phosphatase 2A

Author:

Li Hongyun1,Okamoto Koji1,Peart Melissa J.1,Prives Carol1

Affiliation:

1. Department of Biological Sciences, Columbia University, New York, New York 10027

Abstract

ABSTRACT Although the cyclin G1 gene is known to be regulated at the transcriptional level by p53, less is understood about the turnover of its protein product. We found that ectopically and endogenously expressed cyclin G1 protein is highly unstable and is degraded by a proteasome-mediated pathway. The N-terminal 137 amino acids of cyclin G1 (cyclin G 1-137 ) are necessary and sufficient for both cyclin G1 ubiquitination and turnover. Interestingly, a mutant cyclin G1 (8KR) in which all lysine residues in this region have been replaced with arginine can be both ubiquitinated in cells and stabilized by a proteasome inhibitor to a similar extent as wild-type cyclin G 1-137 . Furthermore, the presence of a six-Myc tag at the N terminus of cyclin G 1-137 significantly inhibits the protein's turnover, suggesting a role for the extreme N terminus of the protein in ubiquitin-mediated proteolysis. Although we and others previously showed that cyclin G1 protein can bind to MDM2, which functions as an E3 ubiquitin ligase to p53 and itself, cyclin G1 protein can be degraded in cells without MDM2 and p53. Interestingly, the B′α1 subunit of the serine/threonine protein phosphatase 2A, which binds to cyclin G1, can stabilize cyclin G1 under unstressed conditions and upon DNA damage, as well as inhibit the ability of cyclin G1 to be ubiquitinated. Our results thus indicate that proteasomal turnover of cyclin G1 is regulated by noncanonical processes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3