The role of human adenovirus early region 3 proteins (gp19K, 10.4K, 14.5K, and 14.7K) in a murine pneumonia model

Author:

Sparer T E1,Tripp R A1,Dillehay D L1,Hermiston T W1,Wold W S1,Gooding L R1

Affiliation:

1. Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

Abstract

Products of human adenovirus (Ad) early region 3 (E3) inhibit both specific (cytotoxic T lymphocytes [CTLs]) and innate (tumor necrosis factor alpha [TNF-alpha]) immune responses in vitro. The E3 gp19K protein prevents CTL recognition of Ad-infected fibroblasts by sequestering major histocompatibility complex class I proteins in the endoplasmic reticulum. E3 proteins 10.4K, 14.5K, and 14.7K function to protect infected cells from TNF-alpha cytolysis. To address the in vivo functions of these proteins, Ad mutants that lack the E3 genes encoding these proteins were inoculated intranasally into C57BL/10SnJ (H-2b) mice. Mutants that lack the gp19K gene failed to alter CTL generation or to affect Ad-induced pulmonary infiltrates. Since gamma interferon (IFN-gamma) is capable of overcoming gp19K suppression of CTL lysis in vitro, mice were depleted of IFN-gamma and inoculated with gp19K mutants. Even when IFN-gamma was depleted, gp19K was incapable of altering pulmonary lesions. These resuls are not in accord with the function of gp19K in vitro and suggest that gp19K does not affect immune recognition in vivo during an acute virus infection, yet they do not exclude the possibility that gp19K blocks immune recognition of Ad during a persistent infection. In contrast, when mice were inoculated with Ad mutants that lack the TNF resistance genes (14.7K and either 10.4K or 14.5K), there was a marked increase in alveolar infiltration and no change in the amounts of perivascular/peribronchiolar infiltration compared with wild-type-Ad-induced pathology. These findings demonstrate the importance of TNF susceptibility and TNF by-products for recruiting inflammatory cells into the lungs during Ad infections.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3