Affiliation:
1. Abteilung für Zell- und Virusgenetik, Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, D-20251 Hamburg, Germany
Abstract
ABSTRACT
The use of retroviral vectors for gene transfer into animals has been severely hampered by the lack of provirus transcription in the early embryo and embryonic stem (ES) cells. This primary block in provirus expression is maintained in differentiated cells by a
cis
-acting mechanism that is not well characterized. Retroviral vectors based on the murine embryonal stem cell virus (MESV), which overcome the transcriptional block in ES cells, were constructed to investigate this secondary mechanism. These vectors transferred G418 resistance to ES cells with the same efficiency as to fibroblasts, but overall transcript levels were greatly reduced. A mosaic but stable expression pattern was observed when single cells from G418-resistant clones were replated in G418 or assayed for expression of LacZ or interleukin-3. The expression levels in independent clones were variable and correlated inversely with methylation. However, a second, more pronounced, block to transcription was found upon differentiation induction. Differentiation of the infected ES cells to cells permissive for retroviral expression resulted in repression and complete extinction of provirus expression. Extinction was not accompanied by increased levels of methylation. Provirus expression is thus regulated by two independent
cis
-acting mechanisms: (i) partial repression in the undifferentiated state, accompanied by increased methylation but compatible with long-term, low expression of retroviral genes, and (ii) total repression and extinction during early stages of differentiation, apparently independent of changes in methylation. These results indicate a time window early during the transition from an undifferentiated to a differentiated stage in which provirus expression is silenced. The mechanisms are presently unknown, but elucidation of these events will have an important impact on vector development for targeting stem cells and for gene therapy.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献