Degenerate Peptide Recognition by Candida albicans Adhesins Als5p and Als1p

Author:

Klotz Stephen A.12,Gaur Nand K.2,Lake Douglas F.3,Chan Vincent2,Rauceo Jason4,Lipke Peter N.4

Affiliation:

1. Department of Medicine, University of Arizona

2. Southern Arizona VA Health Care System

3. Arizona Cancer Center, Tucson, Arizona 55724

4. Department of Biological Sciences and Center for Gene Structure and Function, Hunter College of the City University of New York, New York, New York 10021

Abstract

ABSTRACT Candida albicans and Saccharomyces cerevisiae expressing the adhesins Als5p or Als1p adhere to immobilized peptides and proteins that possess appropriate sequences of amino acids in addition to a sterically accessible peptide backbone. In an attempt to further define the nature of these targets, we surveyed the ability of yeast cells to adhere to 90-μm-diameter polyethylene glycol beads coated with a 7-mer peptide from a library of 19 7 unique peptide-beads. C. albicans bound to ca. 10% of beads from the library, whereas S. cerevisiae expressing Als5p or Als1p bound to ca. 0.1 to 1% of randomly selected peptide-beads. S. cerevisiae expressing Als1p had a distinctly different adherence phenotype than did cells expressing Als5p. The former adhered in groups or clumps of cells, whereas the latter adhered initially as single cells, an event which was followed by the build up of cell-cell aggregates. Beads with adherent cells were removed, and the peptide attached to the bead was determined by amino acid sequencing. All adhesive beads carried a three-amino-acid sequence motif (τφ+) that possessed a vast combinatorial potential. Adherence was sequence specific and was inhibited when soluble peptide identical to the immobilized peptide was added. The Als5p adhesin recognized some peptides that went unrecognized by Als1p. The sequence motif of adhesive peptides identified by this method is common in proteins and offers so many possible sequence combinations that target recognition by the Als proteins is clearly degenerate. A degenerate recognition system provides the fungi with the potential of adhering to a multitude of proteins and peptides, an advantage for any microorganism attempting to establish a commensal or pathogenic relationship with a host.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3