Affiliation:
1. School of Microbiology and Immunology, University of New South Wales, Sydney, Australia.
Abstract
Low-temperature-induced nonculturable cells of the human pathogenic bacterium Vibrio vulnificus retained significant amounts of nucleic acids for more than 5 months. Upon permeabilization of fixed cells, however, an increasing number of cold-incubated cells released the nucleic acids. This indicates substantial degradation of DNA and RNA in nonculturable cells prior to fixation. Treatment of permeabilized cells with DNase and RNase allowed differential staining of DNA and RNA with the nucleic acid dye 4',6-diamidino-2-phenylindole (DAPI). Epifluorescence microscopy revealed that the could-induced nonculturable populations of V. vulnificus are highly heterogeneous with regard to their nucleic acid content. The fraction of nonculturable cells which maintained DNA and RNA structures decreased gradually during cold incubation. After 5 months at 5 degrees C, less than 0.05% of the cells could be observed to retain DNA and RNA. In parallel with the loss of nucleic acids, an increase in the concentrations of UV-absorbing material in the culture supernatants was observed in nonculturable-cell suspensions. It is hypothesized that there are two phases of the formation of nonculturable cells of V. vulnificus: the first involves a loss of culturability with maintenance of cellular integrity and intact RNA and DNA (and thus possibly viability), and the second is typified by a gradual degradation of nucleic acids, the products of which partly remain inside the cells and partly diffuse into the extracellular space. A small number of nonculturable cells, however, retain DNA and RNA, and thus may be viable despite having reduced culturability.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献