SUMO-1 Modification of Human Cytomegalovirus IE1/IE72

Author:

Spengler Mary L.1,Kurapatwinski Karen1,Black Adrian R.1,Azizkhan-Clifford Jane12

Affiliation:

1. Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York

2. Department of Biochemistry, MCP Hahnemann University, Philadelphia, Pennsylvania

Abstract

ABSTRACT Human cytomegalovirus (HCMV) immediate-early protein IE1/IE72 is involved in undermining many cellular processes including cell cycle regulation, apoptosis, nuclear architecture, and gene expression. The multifunctional nature of IE72 suggests that posttranslational modifications may modulate its activities. IE72 is a phosphoprotein and has intrinsic kinase activity (S. Pajovic, E. L. Wong, A. R. Black, and J. C. Azizkhan, Mol. Cell. Biol. 17:6459-6464, 1997). We now demonstrate that IE72 is covalently conjugated to the small ubiquitin-like modifier (SUMO-1). SUMO-1 is an 11.5-kDa protein that is conjugated to multiple proteins and has been reported to exhibit multiple effects, including modulation of protein stability, subcellular localization, and gene expression. A covalently modified protein migrating at ∼92 kDa, which is stabilized by a SUMO-1 hydrolase inhibitor, is revealed by Western blotting with anti-IE72 of lysates from cells infected with HCMV or cells expressing IE72. SUMO modification of IE72 was confirmed by immunoprecipitation with anti-IE72 and anti-SUMO-1 followed by Western blotting with anti-SUMO-1 and anti-IE72, respectively. Lysine 450 is within a sumoylation consensus site (I,V,L)KXE; changing lysine 450 to arginine by point mutation abolishes SUMO-1 modification of IE72. Inhibition of protein phosphatase 1 and 2A, which increases the phosphorylation of IE72, suppresses the formation of SUMO-1-IE72 conjugates. Both wild-type IE72 and IE72 K450R localize to nuclear PML oncogenic domains and disrupt them. Studies of protein stability, transactivation, and complementation of IE72-deficient HCMV (CR208) have revealed no significant differences between wild-type IE72 and IE72 K450R .

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3