Origin of Contamination and Genetic Diversity of Escherichia coli in Beef Cattle

Author:

Aslam Mueen1,Nattress Frances1,Greer Gordon1,Yost Chris1,Gill Colin1,McMullen Lynn2

Affiliation:

1. Lacombe Research Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada T4L 1W1

2. Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5

Abstract

ABSTRACT The possible origin of beef contamination and genetic diversity of Escherichia coli populations in beef cattle, on carcasses and ground beef, was examined by using random amplification of polymorphic DNA (RAPD) and PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of the fliC gene. E. coli was recovered from the feces of 10 beef cattle during pasture grazing and feedlot finishing and from hides, carcasses, and ground beef after slaughter. The 1,403 E. coli isolates (855 fecal, 320 hide, 153 carcass, and 75 ground beef) were grouped into 121 genetic subtypes by using the RAPD method. Some of the genetic subtypes in cattle feces were also recovered from hides, prechilled carcasses, chilled carcasses, and ground beef. E. coli genetic subtypes were shared among cattle at all sample times, but a number of transient types were unique to individual animals. The genetic diversity of the E. coli population changed over time within individual animals grazing on pasture and in the feedlot. Isolates from one animal (59 fecal, 30 hide, 19 carcass, and 12 ground beef) were characterized by the PCR-RFLP analysis of the fliC gene and were grouped into eight genotypes. There was good agreement between the results obtained with the RAPD and PCR-RFLP techniques. In conclusion, the E. coli contaminating meat can originate from cattle feces, and the E. coli population in beef cattle was highly diverse. Also, genetic subtypes can be shared among animals or can be unique to an animal, and they are constantly changing.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3