Transposon-Like Organization of the Plasmid-Borne Organophosphate Degradation ( opd ) Gene Cluster Found in Flavobacterium sp

Author:

Siddavattam Dayananda1,Khajamohiddin Syed1,Manavathi Bramanandam1,Pakala Suresh B.1,Merrick Mike2

Affiliation:

1. Department of Biochemistry, Sri Krishnadevraya University, Anantapur-515 003, India

2. Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom

Abstract

ABSTRACT Several bacterial strains that can use organophosphate pesticides as a source of carbon have been isolated from soil samples collected from diverse geographical regions. All these organisms synthesize an enzyme called parathion hydrolase, and in each case the enzyme is encoded by a gene ( opd ) located on a large indigenous plasmid. These plasmids show considerable genetic diversity, but the region containing the opd gene is highly conserved. Two opd plasmids, pPDL2 from Flavobacterium sp. and pCMS1 from Pseudomonas diminuta , are well characterized, and in each of them a region of about 5.1 kb containing the opd gene shows an identical restriction pattern. We now report the complete sequence of the conserved region of plasmid pPDL2. The opd gene is flanked upstream by an insertion sequence, ISFlsp 1 , that is a member of the IS 21 family, and downstream by a Tn 3 -like element encoding a transposase and a resolvase. Adjacent to opd but transcribed in the opposite direction is an open reading frame ( orf243 ) with the potential to encode an aromatic hydrolase somewhat similar to Pseudomonas putida TodF. We have shown that orf243 encodes a polypeptide of 27 kDa, which plays a role in the degradation of p -nitrophenol and is likely to act in concert with opd in the degradation of parathion. The linkage of opd and orf243 , the organization of the genes flanking opd , and the wide geographical distribution of these genes suggest that this DNA sequence may constitute a complex catabolic transposon.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3