Thermophily in the Geobacteraceae : Geothermobacter ehrlichii gen. nov., sp. nov., a Novel Thermophilic Member of the Geobacteraceae from the “Bag City” Hydrothermal Vent

Author:

Kashefi Kazem1,Holmes Dawn E.1,Baross John A.2,Lovley Derek R.1

Affiliation:

1. Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003

2. School of Oceanography, University of Washington, Seattle, Washington 98195

Abstract

ABSTRACT Little is known about the microbiology of the “Bag City” hydrothermal vent, which is part of a new eruption site on the Juan de Fuca Ridge and which is notable for its accumulation of polysaccharide on the sediment surface. A pure culture, designated strain SS015, was recovered from a vent fluid sample from the Bag City site through serial dilution in liquid medium with malate as the electron donor and Fe(III) oxide as the electron acceptor and then isolation of single colonies on solid Fe(III) oxide medium. The cells were gram-negative rods, about 0.5 μm by 1.2 to 1.5 μm, and motile and contained c -type cytochromes. Analysis of the 16S ribosomal DNA (rDNA) sequence of strain SS015 placed it in the family Geobacteraceae in the delta subclass of the Proteobacteria . Unlike previously described members of the Geobacteraceae , which are mesophiles, strain SS015 was a thermophile and grew at temperatures of between 35 and 65°C, with an optimum temperature of 55°C. Like many previously described members of the Geobacteraceae , strain SS015 grew with organic acids as the electron donors and Fe(III) or nitrate as the electron acceptor, with nitrate being reduced to ammonia. Strain SS015 was unique among the Geobacteraceae in its ability to use sugars, starch, or amino acids as electron donors for Fe(III) reduction. Under stress conditions, strain SS015 produced copious quantities of extracellular polysaccharide, providing a model for the microbial production of the polysaccharide accumulation at the Bag City site. The 16S rDNA sequence of strain SS015 was less than 94% similar to the sequences of previously described members of the Geobacteraceae ; this fact, coupled with its unique physiological properties, suggests that strain SS015 represents a new genus in the family Geobacteraceae . The name Geothermobacter ehrlichii gen. nov., sp. nov., is proposed (ATCC BAA-635 and DSM 15274). Although strains of Geobacteraceae are known to be the predominant Fe(III)-reducing microorganisms in a variety of Fe(III)-reducing environments at moderate temperatures, strain SS015 represents the first described thermophilic member of the Geobacteraceae and thus extends the known environmental range of this family to hydrothermal environments.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3