Cloning and sequencing of the genes for Shiga toxin from Shigella dysenteriae type 1

Author:

Strockbine N A1,Jackson M P1,Sung L M1,Holmes R K1,O'Brien A D1

Affiliation:

1. Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799.

Abstract

The structural genes for Shiga toxin, designated stx A and stx B, were cloned from Shigella dysenteriae type 1 3818T, and a nucleotide sequence analysis was performed. Both stx A and stx B were present on a single transcriptional unit, with stx A preceding stx B. The molecular weight calculated for the processed A subunit was 32,225, while the molecular weight of the processed B subunit was 7,691. Comparison of the nucleotide sequences for Shiga toxin and Shiga-like toxin I (SLT-I) from Escherichia coli revealed that the genes for Shiga toxin and SLT-I were greater than 99% homologous; three nucleotide changes were detected in three separate codons of the A subunits. Only one of these codon differences resulted in a change in the amino acid sequence: a threonine in Shiga toxin at position 45 of the A subunit compared with a serine in the corresponding position in SLT-I. Furthermore, Shiga toxin and SLT-I had identical signal peptides for the A and B subunits, as well as identical ribosome-binding sites, a putative promoter, and iron-regulated operator sequences. These findings indicate that Shiga and SLT-I are essentially the same toxin. Southern hybridization studies with total cellular DNA from several Shigella strains and internal toxin probes for SLT-I and its antigenic variant SLT-II showed that a single fragment in S. dysenteriae type 1 hybridized strongly with the internal SLT-I probe. Fragments with weaker homology to the SLT-I probe were detected in S. flexneri type 2a but no other shigellae. No homology between the Shiga-like toxin II (SLT-II) probe and any of the Shigella DNAs was detected. Whereas SLT-I and SLT-II are phage encoded, no phage could be induced from S. dysenteriae type 1 or other Shigella spp. tested. These results suggest that the Shiga (SLT-I) toxin genes responsible for high toxin production are present in a single copy in S. dysenteriae type 1 but not in other shigellae. The findings further suggest that SLT-II genes are absent in shigellae, as are toxin-converting phages.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3