Analysis of growth rate in sucrose-supplemented cultures of Streptococcus mutans

Author:

Daneo-Moore L,Terleckyj B,Shockman G D

Abstract

In the presence of sucrose, Streptococcus mutans grows in large glucan-containing aggregates. Because of reports of linear rather than exponential growth of sucrose-grown cultures, the kinetics of growth of sucrose-grown cultures of S. mutans strain OMZ-176 were compared with those of glucose-grown cultures. Culture turbidity measurements indicated that growth of sucrose cultures was slower, did not follow exponential kinetics, and slowed and stopped at lower absorbance values than did glucose-grown cultures. However, measurements of the rates of accumulation of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein using fully equilibrated radioactively labeled precursors of each of these macromolecular species in sucrose and glucose-grown cultures showed that: (i) for glucose cultures the synthesis of each of the three informational molecules occurred at the same exponential rate, which was identical to the rate of turbidity increase; (ii) for sucrose cultures each macromolecular species was synthesized at the same exponential rate and these rates were identical to the rate of increase of turbidity of the glucose-grown culture for periods of up to 7 h. Furthermore, the ratios of DNA to RNA, RNA to protein, and protein to DNA for the sucrose cultures were identical to those for the glucose cultures for up to 10 doublings. From these data it was concluded that in the presence of sucrose S. mutans grows in a balanced fashion at the same exponential rate as it does in glucose. The deviation from an exponential growth model of the absorbance in sucrose cultures was attributed to an optical artifact due to the formation of large glucan-containing aggregates of cells. The addition of dextranase to sucrose cultures resulted in cultures which increased in turbidity at the same exponential rate as glucose-grown cultures, without affecting the rate or extent of macromolecular synthesis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference17 articles.

1. Demonstration of five serological groups of streptococcal strains resembling Streptococcus mutans;Bratthall D.;Odontol. Revy,1970

2. Synchronization of cell division;Campbell A.;Bacteriol. Rev.,1957

3. Dean A. C. R. and C. Hinshelwood. 1966. Growth function and regulation in bacterial cells. Oxford University Press New York.

4. Dextraninduced agglutination of Streptococcus mutans, and its potential role in the formation of microbial dental plaques;Gibbons R. J.;J. Bacteriol.,1969

5. Turbidity measurements of bacterial cultures in some available commercial instruments;Koch A. L.;Anal. Biochem.,1970

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3