Yersinia pseudotuberculosis inhibits Fc receptor-mediated phagocytosis in J774 cells

Author:

Fällman M1,Andersson K1,Håkansson S1,Magnusson K E1,Stendahl O1,Wolf-Watz H1

Affiliation:

1. Department of Medical Microbiology, Linköping University, Sweden.

Abstract

Nonopsonized as well as immunoglobulin-G (IgG)-opsonized Yersinia pseudotuberculosis resists phagocytic uptake by the macrophage-like cell line J774 by a mechanism involving the plasmid-encoded proteins Yops. The tyrosine phosphatase YopH was of great importance for the antiphagocytic effect of the bacteria. YopH-negative mutants did not induce antiphagocytosis; instead, they were readily ingested, almost to the same extent as that of the translocation mutants YopB and YopD and the plasmid-cured strain. The bacterial determinant invasin was demonstrated to mediate phagocytosis of nonopsonized bacteria by these cells. In addition to inhibiting uptake of itself, Y. pseudotuberculosis also interfered with the phagocytic uptake of other types of prey: J774 cells that had been exposed to virulent Y. pseudotuberculosis exhibited a reduced capacity to ingest IgG-opsonized yeast particles. This effect was impaired when the bacterium-phagocyte interaction occurred in the presence of gentamicin, indicating a requirement for in situ bacterial protein synthesis. The Yersinia-mediated antiphagocytic effect on J774 cells was reversible: after 18 h in the presence of gentamicin, the phagocytic capacity of Yersinia-exposed J774 cells was completely restored. Inhibition of the uptake of IgG-opsonized yeast particles was dependent on the Yops in a manner similar to that seen for blockage of Yersinia phagocytosis. This similarity suggests that the pathogen affected a general phagocytic mechanism. Despite a marked reduction in the capacity to ingest IgG-opsonized yeast particles, no effect was observed on the binding of the prey. Taken together, these results demonstrate that Yop-mediated antiphagocytosis by Y. pseudotuberculosis affects regulatory functions downstream of the phagocytic receptor and thereby extends to other types of phagocytosis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3