NS2 is required for efficient translation of viral mRNA in minute virus of mice-infected murine cells

Author:

Naeger L K1,Salomé N1,Pintel D J1

Affiliation:

1. Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia 65212.

Abstract

Detailed analysis of five NS2 mutants of the autonomous parvovirus minute virus of mice (MVMp) has revealed the following. At low multiplicities of infection, NS2 mutants killed NB324K cells as well as wild-type (wt) MVM did and grew to high titers, while in contrast they grew poorly and did not readily kill murine A9 cells. Following CaPO4 transfection of murine fibroblasts, NS2 mutant infectious clones generated approximately 10-fold less monomer replicative-form DNA than wt and no detectable progeny single-stranded DNA. On nonmurine semipermissive NB324K cells, however, these mutant plasmid clones generated near wt levels of all replicative DNA forms. After infection of highly synchronized murine fibroblasts by NS2 mutant virus at inputs equivalent to those of the wt, mutant monomer replicative-form DNA was decreased 5- to 10-fold compared with that of the wt, and progeny single-stranded DNA accumulation was decreased to an even greater extent. Both total and cytoplasmic NS2 mutant RNA was decreased, but the amount of total viral mRNA generated, relative to accumulated viral DNA in the same experiments, was similar to that seen in wt infection. The accumulation of virus-generated proteins was also decreased in NS2 mutant infection; however, the magnitude of this decrease, compared with that of wt infections, was significantly greater than the concomitant decrease in mutant-generated levels of accumulated cytoplasmic RNA, and this effect was most dramatic for VP2. There was no such disparity between the relative accumulation of mutant-generated RNA and protein in cells permissive for the growth of these mutants. These results suggest that translation of MVM viral RNA is specifically reduced in NS2 mutant infection of restrictive cells. Because the affected viral proteins are required for the efficient production of viral replicative DNA forms, these results reveal a fundamental, although perhaps not the only, role for NS2 in parvovirus infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3