Attenuation of Late-Stage Disease in Mice Infected bythe Mycobacterium tuberculosis Mutant Lacking theSigF Alternate Sigma Factor and Identification ofSigF-Dependent Genes by MicroarrayAnalysis

Author:

Geiman Deborah E.1,Kaushal Deepak1,Ko Chiew1,Tyagi Sandeep1,Manabe Yukari C.1,Schroeder Benjamin G.2,Fleischmann Robert D.2,Morrison Norman E.1,Converse Paul J.1,Chen Ping1,Bishai William R.1

Affiliation:

1. Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore

2. The Institute for Genomic Research, Rockville, Maryland

Abstract

ABSTRACT The Mycobacterium tuberculosis alternate sigma factor, SigF, is expressed during stationary growth phase and under stress conditions in vitro. To better understand the function of SigF we studied the phenotype of the M. tuberculosis Δ sigF mutant in vivo during mouse infection, tested the mutant as a vaccine in rabbits, and evaluated the mutant's microarray expression profile in comparison with the wild type. In mice the growth rates of theΔ sigF mutant and wild-type strains were nearly identical during the first 8 weeks after infection. At 8 weeks, theΔ sigF mutant persisted in the lung, while the wild type continued growing through 20 weeks. Histopathological analysis showed that both wild-type and mutant strains had similar degrees of interstitial and granulomatous inflammation during the first 12 weeks of infection. However, from 12 to 20 weeks the mutant strain showed smaller and fewer lesions and less inflammation in the lungs and spleen. Intradermal vaccination of rabbits with the M. tuberculosis Δ sigF strain, followed by aerosol challenge, resulted in fewer tubercles than did intradermal M. bovis BCG vaccination. Complete genomic microarray analysis revealed that 187 genes were relatively underexpressed in the absence of SigF in early stationary phase, 277 in late stationary phase, and only 38 genes in exponential growth phase. Numerous regulatory genes and those involved in cell envelope synthesis were down-regulated in the absence of SigF; moreover, the Δ sigF mutant strain lacked neutral red staining, suggesting a reduction in the expression of envelope-associated sulfolipids. Examination of 5′-untranslated sequences among the downregulated genes revealed multiple instances of a putative SigF consensus recognition sequence: GGTTTCX 18 GGGTAT. These results indicate that in the mouse the M. tuberculosis Δ sigF mutant strain persists in the lung but at lower bacterial burdens than wild type and is attenuated by histopathologic assessment. Microarray analysis has identified SigF-dependent genes and a putative SigF consensus recognition site.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3