Author:
Ransom Eric M.,Ellermeier Craig D.,Weiss David S.
Abstract
ABSTRACTFluorescent proteins are powerful reporters in biology, but most require O2for chromophore maturation, making them inherently difficult to use in anaerobic bacteria.Clostridium difficile, a strict anaerobe with a genomic GC content of only 29%, is the leading cause of hospital-acquired diarrhea in developed countries, and new methods for studying this pathogen are sorely needed. We recently demonstrated that a cyan fluorescent protein called CFPoptthat has been codon optimized for production in low-GC bacteria can be used to study protein localization inC. difficileprovided the cells are fixed prior to exposure to air. We describe here a codon-optimized variant of mCherry (mCherryOpt) that exhibits faster acquisition of fluorescence and a better signal-to-noise ratio than CFPopt. We utilizedmCherryOptto construct plasmids for studying protein localization (pRAN473) and gene expression (pDSW1728) inC. difficile. Plasmid pRAN473 is anmCherryOptfusion vector with a tetracycline-inducible promoter. To document its biological utility, we demonstrated septal localization of two cell division proteins, MldA and ZapA. Plasmid pDSW1728 is designed for cloning a promoter of interest upstream ofmCherryOpt. As proof of principle, we studied the expression of thepdaVoperon, which is required for lysozyme resistance. In confirmation and extension of previous reports, we found that expression of thepdaVoperon requires the alternative sigma factor σvand that induction by lysozyme is dose dependent and uniform across the population of lysozyme-treated cells.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献