A Bacteriophage for Myxococcus xanthus : Isolation, Characterization and Relation of Infectivity to Host Morphogenesis

Author:

Burchard Robert P.1,Dworkin Martin1

Affiliation:

1. Department of Microbiology, University of Minnesota, Minneapolis, Minnesota

Abstract

Burchard, Robert P. (University of Minnesota, Minneapolis), and M. Dworkin . A bacteriophage for Myxococcus xanthus : isolation, characterization and relation of infectivity to host morphogenesis. J. Bacteriol. 91: 1305–1313. 1966.—A bacteriophage (MX-1) infecting Myxococcus xanthus FB t has been isolated from cow dung. The bacteriophage particle is approximately 175 mμ long. A tail about 100 mμ in length is encased in a contractile sheath and terminates in a tail plate. The head is polyhedral with a width of about 75 mμ. The nucleic acid of the bacteriophage is deoxyribonucleic acid and has a guanine plus cytosine content of 55.5%. The bacteriophage requires 10 −3 m Ca ++ and 10 −2 m monovalent cation for optimal adsorption. Grown on vegetative cells of M. xanthus FB t at 30 C in 2% Casitone medium, the bacteriophage has a latent period of 120 min and a burst size of approximately 100. Host range studies indicate that three strains of M. xanthus including a morphogenetic mutant are sensitive to the bacteriophage, whereas M. fulvus, Cytophaga, Sporocytophaga myxococcoides , and a fourth strain of M. xanthus are not. Of the two cellular forms characteristic of the Myxococcus life cycle, the bacteriophage infect only the vegetative cells; they do not adsorb to microcysts. Ability to adsorb bacteriophage is lost between 65 and 75 min after initiation of the relatively synchronous conversion of vegetative cells to microcysts. The bacteriophage does not adsorb to spheroplasts. After the appearance of visible morphogenesis and before the loss of bacteriophage receptor sites, addition of bacteriophage results in the formation of microcysts which give rise to infective centers only upon germination. The possibility that the infected microcysts are harboring intact bacteriophages has been eliminated.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3