Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm

Author:

Dunne W M1,Mason E O1,Kaplan S L1

Affiliation:

1. Department of Pathology, Baylor College of Medicine, Houston, Texas 77030-2399.

Abstract

Using an equilibrium dialysis chamber, we evaluated the penetration of vancomycin, rifampin, or both through a staphylococcal biofilm to simulate treatment of an infected biomedical implant. A biofilm of ATCC 35984 (slime-positive Staphylococcus epidermidis; vancomycin MIC and MBC, 1 and 2 micrograms/ml, respectively; rifampin MIC and MBC, 0.00003 and 0.00025 micrograms/ml, respectively) was established on the inner aspect of the dialysis membrane (molecular mass exclusion, 6,000 kDa). Serum containing vancomycin (40 micrograms/ml), rifampin (20 micrograms/ml), or a combination of both was introduced into the inner chamber of the dialysis unit (in direct contact with the biofilm), and serum alone was added to the outer chamber. Rifampin and vancomycin concentrations in both chambers were determined over a 72-h period. In the absence of rifampin, the concentration of vancomycin in the outer chamber exceeded the MBC for the organism after 24 h, and the MBC increased to nearly 8.0 micrograms/ml by 72 h, demonstrating that therapeutic levels of vancomycin can penetrate a staphylococcal biofilm. However, viable bacteria were recovered from the biofilm after 72 h of treatment with no apparent increase in the MIC or MBC of vancomycin. Similarly, concentrations of rifampin exceeding the MBC were detected in the outer chamber after 24 h of treatment, but viable organisms were recovered from the biofilm after 72 h of treatment. In this case, the rifampin MBCs for surviving organisms increased from 0.00025 to > 128 micrograms/ml. The combination of agents prevented the development of resistance to rifampin, improved the perfusion of vancomycin through the biofilm, and decreased the penetration of rifampin but did not sterilize the membrane. These observations provide evidence that bactericidal levels of vancomycin, rifampin, or both can be attained at the surface of an infected implant. Despite this, sterilization of the biofilm was not accomplished after 72 h of treatment.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3