Regulation of heme biosynthesis in Salmonella typhimurium: activity of glutamyl-tRNA reductase (HemA) is greatly elevated during heme limitation by a mechanism which increases abundance of the protein

Author:

Wang L Y1,Brown L1,Elliott M1,Elliott T1

Affiliation:

1. Department of Microbiology and Immunology, West Virginia University Health Sciences Center, Morgantown 26506, USA.

Abstract

In Salmonella typhimurium and Escherichia coli, the hemA gene encodes the enzyme glutamyl-tRNA reductase, which catalyzes the first committed step in heme biosynthesis. We report that when heme limitation is imposed on cultures of S. typhimurium, glutamyl-tRNA reductase (HemA) enzyme activity is increased 10- to 25-fold. Heme limitation was achieved by a complete starvation for heme in hemB, hemE, and hemH mutants or during exponential growth of a hemL mutant in the absence of heme supplementation. Equivalent results were obtained by both methods. To determine the basis for this induction, we developed a panel of monoclonal antibodies reactive with HemA, which can detect the small amount of protein present in a wild-type strain. Western blot (immunoblot) analysis with these antibodies reveals that the increase in HemA enzyme activity during heme limitation is mediated by an increase in the abundance of the HemA protein. Increased HemA protein levels were also observed in heme-limited cells of a hemL mutant in two different E. coli backgrounds, suggesting that the observed regulation is conserved between E. coli and S. typhimurium. In S. typhimurium, the increase in HemA enzyme and protein levels was accompanied by a minimal (less than twofold) increase in the expression of hemA-lac operon fusions; thus HemA regulation is mediated either at a posttranscriptional step or through modulation of protein stability.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3