Analysis of RogB-Controlled Virulence Mechanisms and Gene Expression in Streptococcus agalactiae

Author:

Gutekunst Heike1,Eikmanns Bernhard J.1,Reinscheid Dieter J.1

Affiliation:

1. Department of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany

Abstract

ABSTRACT Streptococcus agalactiae is the leading cause of bacterial sepsis and meningitis in neonates and also the causative agent of different serious infections in immunocompromised adults. The wide range of diseases that are caused by S. agalactiae suggests regulatory mechanisms that control the formation of specific virulence factors in these bacteria. The present study describes a gene from S. agalactiae , designated rogB , encoding a protein with significant similarity to members of the RofA-like protein (RALP) family of transcriptional regulators. Disruption of the rogB gene in the genome of S. agalactiae resulted in mutant strain RGB1, which was impaired in its ability to bind to fibrinogen and fibronectin. Mutant RGB1 also exhibited a reduced adherence to human epithelial cells but did not show an altered invasion of eukaryotic cells. By real-time PCR analysis, mutant RGB1 revealed an increased expression of the cpsA gene, encoding a regulator of capsule gene expression. However, strain RGB1 exhibited a reduced expression of the rogB gene and of two adjacent genes, encoding putative virulence factors in S. agalactiae . Furthermore, mutant RGB1 was impaired in the expression of the fbsA gene, coding for a fibrinogen receptor from S. agalactiae . The altered gene expression in mutant RGB1 could be restored by plasmid-mediated expression of rogB , confirming a RogB deficiency as the cause for the observed changes in virulence gene expression in S. agalactiae . Reporter gene studies with a promotorless luciferase gene fused to fbsA allowed a growth-dependent analysis of fbsA expression in S. agalactiae . These reporter gene studies also suggest that RogB exerts a positive effect on fbsA expression in S. agalactiae .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3