Significant Gene Order and Expression Differences in Bordetella pertussis Despite Limited Gene Content Variation

Author:

Brinig Mary M.12,Cummings Craig A.12,Sanden Gary N.3,Stefanelli Paola4,Lawrence Andrew5,Relman David A.162

Affiliation:

1. Departments of Microbiology and Immunology

2. VA Palo Alto Health Care System, Palo Alto, California 94304

3. Centers for Disease Control and Prevention, Atlanta, Georgia 30333

4. Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy

5. Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia

6. Medicine, Stanford University School of Medicine, Stanford, California 94305

Abstract

ABSTRACT Bordetella pertussis , an obligate human pathogen and the agent of whooping cough, is a clonal species, despite the dynamic selection pressures imposed by host immunity and vaccine usage. Because the generation of variation is critical for species evolution, we employed a variety of approaches to examine features of B. pertussis genetic variation. We found a high level of conservation of gene content among 137 B. pertussis strains with different geographical, temporal, and epidemiological associations, using comparative genomic hybridization. The limited number of regions of difference were frequently located adjacent to copies of the insertion element IS 481 , which is present in high numbers in the B. pertussis chromosome. This repeated sequence appears to provide targets for homologous recombination, resulting in deletion of intervening sequences. Using subtractive hybridization, we searched for previously undetected genes in diverse clinical isolates but did not detect any new genes, indicating that gene acquisition is rare in B. pertussis . In contrast, we found evidence of altered gene order in the several strains that were examined and again found an association of IS 481 with sites of rearrangement. Finally, we compared whole-genome expression profiles of different strains and found significant changes in transcript abundance, even in the same strain after as few as 12 laboratory passages. This combination of approaches provides a detailed picture of a pathogenic species with little gene loss or gain but with the capacity to generate variation by rearranging its chromosome and altering gene expression. These findings have broad implications for host adaptation by microbial pathogens.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3