Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene

Author:

Oldenhuis R1,Oedzes J Y1,van der Waarde J J1,Janssen D B1

Affiliation:

1. Department of Biochemistry, University of Groningen, The Netherlands.

Abstract

The kinetics of the degradation of trichloroethylene (TCE) and seven other chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b were studied. All experiments were performed with cells grown under copper stress and thus expressing soluble methane monooxygenase. Compounds that were readily degraded included chloroform, trans-1,2-dichloroethylene, and TCE, with Vmax values of 550, 330, and 290 nmol min-1 mg of cells-1, respectively. 1,1-Dichloroethylene was a very poor substrate. TCE was found to be toxic for the cells, and this phenomenon was studied in detail. Addition of activated carbon decreased the acute toxicity of high levels of TCE by adsorption, and slow desorption enabled the cells to partially degrade TCE. TCE was also toxic by inactivating the cells during its conversion. The degree of inactivation was proportional to the amount of TCE degraded; maximum degradation occurred at a concentration of 2 mumol of TCE mg of cells-1. During conversion of [14C]TCE, various proteins became radiolabeled, including the alpha-subunit of the hydroxylase component of soluble methane monooxygenase. This indicated that TCE-mediated inactivation of cells was caused by nonspecific covalent binding of degradation products to cellular proteins.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference41 articles.

1. Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea;Arciero D.;Biochem. Biophys. Res. Commun.,1989

2. The degradation of trichloroethylene in mixed methanogenic cultures;Beak N. H.;J. Environ. Qual.,1989

3. Removal of trace chlorinated organic compounds by activated carbon and fixedfilm bacteria;Bouwer E. J.;Environ. Sci. Technol.,1982

4. Transformation of 1- and 2-carbon halogenated aliphatic compounds under methanogenic conditions;Bouwer E. J.;Appl. Environ. Microbiol.,1983

5. Substrate specificities of the soluble and particulate methane monooxygenases of Methylosinus trichosporium OB3b;Burrows K. J.;J. Gen. Microbiol.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3