A Small Protein (Ags1p) and the Pho80p-Pho85p Kinase Complex Contribute to Aminoglycoside Antibiotic Resistance of the Yeast Saccharomyces cerevisiae

Author:

Wickert Stephan1,Finck Markus1,Herz Britta1,Ernst Joachim F.1

Affiliation:

1. Institut für Mikrobiologie, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany

Abstract

ABSTRACT We identified the AGS1 and AGS3 genes by their ability to partially complement an ags mutant (RC1707) which is supersensitive to various aminoglycoside antibiotics (J. F. Ernst and R. K. Chan, J. Bacteriol. 163:8–14, 1985). AGS1 is located in proximity to the centromere of chromosome III and encodes a small protein of 88 amino acids. The size of the AGS1 transcript, which in wild-type cells is 1 kb, is reduced to 0.75 kb in mutant RC1707. Disruption of AGS1 rendered strains supersensitive to hygromycin B and increased their resistance to vanadate. In addition, ags1 Δ strains underglycosylated invertase but had normal carboxypeptidase Y glycosylation, suggesting that Ags1p is required for the elaboration of outer N-glycosyl chains. AGS3 was found to be identical to PHO80 ( TUP7 ), which encodes a cyclin activating the Pho85p protein kinase. Deletion of either PHO80 or PHO85 led to aminoglycoside supersensitivity; pho80Δ ags1 Δ strains showed an enhanced-sensitivity phenotype compared to single mutants. pho80 and pho85 mutants were rendered resistant by deletion of PHO4 , indicating that activation of the Pho4p transcription factor is required for increased aminoglycoside sensitivity. Thus, both the Pho80p-Pho85p kinase complex (by Pho4p phosphorylation) and a novel component of the N glycosylation pathway contribute to basal levels of aminoglycoside resistance in Saccharomyces cerevisiae.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3