Metabolism of RNA-ribose by Bdellovibrio bacteriovorus during intraperiplasmic growth on Escherichia coli

Author:

Hespell R B,Odelson D A

Abstract

During intraperiplasmic growth of Bdellovibrio bacteriovorus 109J on Escherichia coli some 30 to 60% of the initial E. coli RNA-ribose disappeared as cell-associated orcinol-positive material. The levels of RNA-ribose in the suspending buffer after growth together with the RNA-ribose used for bdellovibrio DNA synthesis accounted for 50% or less of the missing RNA-ribose. With intraperiplasmic growth in the presence of added U-14C-labeled CMP, GMP, or UMP, radioactivity was found both in the respired CO2 and incorporated into the bdellovibrio cell components. The addition of exogenous unlabeled ribonucleotides markedly reduced the amounts of both the 14CO2 and 14C incorporated into the progeny bdellovibrios. During intraperiplasmic growth of B. bacteriovorus on [U-14C]ribose-labeled E. coli BJ565, ca. 74% and ca. 19% of the initial 14C was incorporated into the progeny bdellovibrios and respired CO2, respectively. Under similar growth conditions, the addition of glutamate substantially reduced only the 14CO2; however, added ribonucleotides reduced both the 14CO2 and the 14C incorporated into the progeny bdellovibrios. No similar effects were found with added ribose-5-phosphate. The distribution of 14C in the major cell components was similar in progeny bdellovibrios whether obtained from growth on [U-14C]ribose-labeled E. coli BJ565 or from E. coli plus added U-14C-labeled ribonucleotides. After intraperiplasmic growth of B. bacteriovorus on [5,6-3H-]uracil-[U-14C]ribose-labeled E. coli BJ565 (normal or heat treated), the whole-cell 14C/3H ratio of the progeny bdellovibrios was some 50% greater and reflected the higher 14C/3H ratios found in the cell fractions. B. bacteriovorus and E. coli cell extracts both contained 5'-nucleotidase, uridine phosphorylase, purine phosphorylase, deoxyribose-5-phosphate aldolase, transketolase, thymidine phosphorylase, phosphodeoxyribomutase, and transaldolase enzyme activities. The latter three enzyme activities were either absent or very low in cell extracts prepared from heat-treated E. coli cells. It is concluded that during intraperiplasmic growth B. bacteriovorus degrades some 20 to 40% of the ribonucleotides derived from the initial E. coli RNA into the base and ribose-1-phosphate moieties. The ribose-1-phosphate is further metabolized by B. bacteriovorus both for energy production and for biosynthesis, of non-nucleic acid cell material. In addition, the data indicate that during intraperiplasmic growth B. bacteriovorus can metabolize ribose only if this compound is available to it as the ribonucleoside monophosphate.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3