Affiliation:
1. Department of Biochemistry and Molecular Pharmacology
2. Center for Human Virology and Biodefense, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
3. Department of Medicine
4. George Washington University Medical Center, Washington, D.C. 20037
Abstract
ABSTRACT
Recombinant rabies virus (RV) vaccine strain-based vectors have been successfully developed as vaccines against other viral diseases (J. P. McGettigan et al., J. Virol. 75:4430-4434, 2001; McGettigan et al., J. Virol. 75:8724-8732, 2001; C. A. Siler et al., Virology 292:24-34, 2002), and safety concerns have recently been addressed (McGettigan et al., J. Virol. 77:237-244, 2003). However, size limitations of the vectors may restrict their use for development of vaccine applications that require the expression of large and multiple foreign antigens. Here we describe a new RV-based vaccine vehicle expressing 4.4 kb of the human immunodeficiency virus type 1 (HIV-1) Gag-Pol precursor Pr160. Our results indicate that Pr160 is expressed and processed, as demonstrated by immunostaining and Western blotting. Electron microscopy studies showed both immature and mature HIV-1 virus-like particles (VLPs), indicating that the expressed HIV-1 Gag Pr55 precursor was processed properly by the HIV-1 protease. A functional assay also confirmed the cleavage and functional expression of the HIV-1 reverse transcriptase (RT) from the modified RV genome. In the next step, we constructed and recovered a new RV vaccine strain-based vector expressing a chimeric HIV-1
89.6P
RV envelope protein from an additional RV transcription unit located between the RV nucleoprotein (N) and phosphoprotein (P) in addition to HIV-1 Pr160. The 2.2-kb chimeric HIV-1/RV envelope protein is composed of the HIV-1 Env ectodomain (ED) and transmembrane domain (TD) fused to RV glycoprotein (G) cytoplasmic domain (CD), which is required for efficient incorporation of HIV-1 Env into RV particles. Of note, the expression of both HIV-1 Env and HIV-1 Pr160 resulted in an increase in the rhabdoviral genome of >55%. Both rhabdovirus-expressed HIV-1 precursor proteins were functional, as indicated by RT activity and Env-based fusion assays. These findings demonstrate that both multiple and very large foreign genes can be effectively expressed by RV-based vectors. This research opens up the possibility for the further improvement of rhabdovirus-based HIV-1 vaccines and their use to express large foreign proteins, perhaps from multiple human pathogens.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Reference56 articles.
1. Addo, M. M., M. Altfeld, E. S. Rosenberg, R. L. Eldridge, M. N. Philips, K. Habeeb, A. Khatri, C. Brander, G. K. Robbins, G. P. Mazzara, P. J. Goulder, B. D. Walker, and H. I. V. C. S. Collaboration. 2001. The HIV-1 regulatory proteins Tat and Rev are frequently targeted by cytotoxic T lymphocytes derived from HIV-1-infected individuals. Proc. Natl. Acad. Sci. USA98:1781-1786.
2. Amara, R. R., and H. L. Robinson. 2002. A new generation of HIV vaccines. Trends Mol. Med.8:489-495.
3. Critical Role for Env as well as Gag-Pol in Control of a Simian-Human Immunodeficiency Virus 89.6P Challenge by a DNA Prime/Recombinant Modified Vaccinia Virus Ankara Vaccine
4. Control of a Mucosal Challenge and Prevention of AIDS by a Multiprotein DNA/MVA Vaccine
5. Barouch, D. H., T. M. Fu, D. C. Montefiori, M. G. Lewis, J. W. Shiver, and N. L. Letvin. 2001. Vaccine-elicited immune responses prevent clinical AIDS in SHIV(89.6P)-infected rhesus monkeys. Immunol. Lett.79:57-61.
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献